
International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021                                                           625 
ISSN 2229-5518  
 

IJSER © 2021 

http://www.ijser.org 

Statistical Modelling of Annual Maximum 
Rainfall for Sokoto Basin using Extreme 

Value Theory 
Popoola, A.M., Adegbola, A.A., Olaniyan, O.S. & Ayinde, R.B. 

Department of Civil Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria. 

Email: osolaniyan@lautech.edu.ng, malabipopoola@gmail.com. 

 

Abstract - Water is one of the most important natural resources with diverse uses in agricultural, domestic and industrial sectors. Rainfall should 

be monitored overtime as significant changes in its intensity may lead to flood or drought. Extreme value theory gives us a statistical approach for 

the occurrences and the magnitude of these extreme cases that are beyond the scope of available data. In this study, statistical modelling of annual 

maximum rainfall in Sokoto Basin was done to predict extreme annual maximum rainfall trends and compute the return period. 

Rainfall data was obtained from Sokoto Rima River Basin Development Authority for the period 1915-2018. The minimum, maximum, 

standard skewness and kurtosis of annual precipitation was determined. Parameter estimation methods (location, scale and shape) and Model 

selection criteria [negative log likelihood, AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion)] were estimated. Extreme 

value distributions to mean annual rainfall were selected. 

The minimum, maximum, standard skewness and kurtosis of the data were 342.2mm, 1477.5mm, 3.8217 and 3.7474, respectively. The 

location, scale and shape of the model ranged 140.94-636.89, 55.76-201.51 and -0.07-0.15, respectively. The negative log likelihood, AIC and BIC 

varied from 80.47-209.09, 166.95-1383.13 and 171.53-1391.06, respectively. The return levels were estimated for 5, 10, 20, 30, 50 and 100 years. 

The returned period estimated were 867.662, 974.6115, 1072.2101, 1126.2364, 1191.6743 and 1278.3797mm, respectively. 

Generalized Pareto Distributions Model is adequate to predict extreme annual maximum rainfall trend in Sokoto Basin based. The return 

levels revealed that rainfall are increasing and may cause flooding in the nearest future. 

 

Index Terms: Extreme Value Theory, Rainfall, R-package, Sokoto Basin. 

——————————      —————————— 

1 INTRODUCTION 

ater is a precious resources that exist naturally on the planet earth. Precipitation and temperature extremes 

are considered to be the most important climate events and have been extensively explored over the past 

several decades, according to [30], [32]. Water is one of the most important natural resources with diverse uses 

in agricultural, domestic and industrial sectors. Rainfall is the water falling in drops from vapor condensed in 

the atmosphere. Low or excessive rainfall can lead to water scarcity or floods, which may cause great damage to 

human health, the environment, and property, leading to massive social and economic losses. Rainfall has a 

substantial influence on agriculture, food security, infrastructure development, water quality and the economy 

[7]. Although knowledge of rainfall patterns over an area may be used for strategic economic planning, it is one 

of the most difficult meteorological parameters to study because of lack of reliable data and large variations of 

rainfall in space, and time [7].  

 Rainfall is a climate parameter that affects the way and manner man lives. It affects every facet of the 

ecological system, flora and fauna inclusive. Globally, lots of studies have been conducted on rainfall [17]. 

Rainfall and temperature are important climatic factors for crop production and affects humans’ basic needs such 

as health, shelter, food and water in Sokoto Basin. However extreme rainfall causes flooding which can lead to 

loss of lives, properties among others. Extreme temperature also causes drought, hot and cold spells among 

others which have adverse implications on human beings and agriculture. Human losses from flooding are 

projected to increase by 70-80% if the global mean temperature increases above 1.5C from the pre-industrial 

level [13]. It is therefore important to know about occurrences of such extreme events and their chances of 

occurring.  

 Most climate models show that, extreme rainfall events increase in response to increase in greenhouse 

gases. The greenhouse gases are not the sole agents responsible for extreme rainfall events. However, they 
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amplify the extreme rainfall induced by other causes. However, those extreme rainfall events will increase as 

global warming proceeds unabated. Hence, it is absolutely essential for us to be prepared to tackle more extreme 

rainfall events in this region in the future.  

 Extreme value theory gives us a statistical approach for the occurrences and the magnitude of these 

extreme cases or rare event that are beyond the scope of available data [23]. Therefore, developing methods that 

can suitably predict meteorological events is extremely valuable for both meteorologists and civil engineers in 

light of global climate change.  

 The main motivation for statistical modelling of weather extremes is reliability: the ability of a system 

or component to withstand the weather conditions for the whole of its working life. For instance, for civil 

engineers to determine how high the wall of a reservoir dam should be, they need to estimate what the heaviest 

(maximum) rainfall amount will be over some specified future time period. This can only be achieved by using 

historical data and fitting an appropriate statistical model for them. That is, a model for risk is developed by 

selecting a probability distribution that gives the best fit to the data at hand. Statistical models for extreme values 

are based on an asymptotic theory called extreme value theory [29]. 

 

2 Materials and Methodology 

The Study Area 

 The study area is Sokoto, north-western Nigeria. The area is found between latitudes 100N and 13058’N; 

and longitudes 408’E and 6054’E. The area so defined covers a land area of approximately 62,000km2. It lies to the 

north-west of Nigeria and shares its borders with Niger Republic to the north, Zamfara State to the South-East, 

Kebbi State to the South-West, and Benin Republic to the west. The southern boundary is arbitrarily defined by 

the Sudan savanna. Like the rest of West Africa, the climate of the region is controlled largely by the two 

dominant air masses affecting the sub-region. These are the dry, dusty, tropical-continental (cT) air mass (which 

originates from the Sahara desert), and the warm, tropical-maritime (mT) air mass (which originates from the 

Atlantic Ocean). The influence of both air masses on the region is determined largely by the movement of the 

Inter-Tropical Convergence Zone (ITCZ), a zone representing the surface demarcation between the two air 

masses. The interplay of these two air masses gives rise to two distinct seasons within the sub-region. The wet 

season is associated with the tropical maritime air mass, while the dry season is a product of the tropical 

continental air mass. The influence and intensity of the wet season decreases from the West African coast 

northwards. Therefore, precipitation in the whole sub-region of West Africa depends on thunderstorm activity 

which occurs along disturbance lines called “line squalls” and, about 80 percent of the total annual rainfall for 

most places is associated with line squall activities which are prevalent between June and September [1]. 
  

Source of Data 

 The data used for this study consist of annual maximum rainfall for Sokoto Basin extracted from the 

mean historical monthly rainfall for Sokoto during the time period 1915-2018. The data set was produced by the 

Sokoto Rima River Basin Development Authority. The choice of the time period is based on the quality and 

availability of data. The data produced by the monitoring team at Goronyo dam are of very high quality with no 

missing values. The data is required for model setup, model calibration and validation purposes. 
 

(A) The Classical Extreme Value Distributions 

 The basic construction of the generalized extreme value distribution, according to [10], is as follows: 

Assume that the random variable Xi measures a daily, weekly, monthly or yearly quantity such as maximum 

temperature. Let Mn = max{X1,...,Xn} where X1,...,Xn is a sequence of independent random variables and Mn 

corresponds to the maximum of n observations with a common distribution function F then, the distribution of 

Mn can be determined, theoretically, for all values of n. This is given by 

Pr{Mn ≤ z} = Pr{X1≤z, ...,Xn≤z}   (1) 
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= Pr{X1≤z} × ... × Pr{Xn≤z} 

= {F(z)n} 

 According to [10], this formulation is not helpful in practice because very small discrepancies in the 

estimates of F from observed data which are substituted into (1) can lead to substantial discrepancies for Fn. If 

the population distribution function F were known, the distribution function of Mn could be determined exactly. 

However, the population distribution function is often unknown. Therefore, the distribution of Mn is 

approximated by modeling Fn by means of asymptotic theory of Mn. This, however, has a disadvantage that as 

n→ ∞, the distribution of Mn degenerates to a point mass at the upper end point of F. In order to avert this 

problem, a linear renormalization of Mn is allowed which is analogous to the central limit theorem. The linear 

renormalization of Mn is given by the following formula: 

Mn= (
Mn− bn

an
 ≤ x), for sequences an> 0 and bn  (2) 

When suitable an and bn are chosen the distribution of Mn is stabilized. This is formulated in theorem 

called the extremal types theorem by [14]. 

Extremal types theorem: If there exist sequences of constants {an> 0} and {bn} such that 

𝑃𝑟{(
𝑀𝑛− 𝑏𝑛

𝑎𝑛
 ≤ 𝑧) →G (z) where Ga non-degenerate distribution function, then G belongs to one of the following families: 

I: G(x) = exp {− exp [− (
𝑥−𝑏

𝑎
)]}, if - ∞ <x<∞  (3) 

II: G(x) = {
0

exp
{− (

𝑥−𝑏

𝑎
) − 𝛼},    (4) 

III: G(x) ={
𝑒𝑥𝑝

1
{− [− (

𝑥−𝑏

𝑎
) 𝛼]}     (5) 

 For parameters σ > 0, 𝜇 ∈ R, and 𝜀> 0. Here, 𝜀 is the shape parameter, σ is the scale parameter and 𝜇 is 

the location parameter. The three distributions are referred to as the extreme value distributions. Equations (3), 

(4) and (5) are known respectively as the Gumbel, Frechet and Weibull families of distributions.  

 The three types of distributions stated above have distinct forms of behavior corresponding to different 

forms of tail behavior for the distribution function F of the Xi. The question, therefore, becomes which of the 

three distributions should be used when analyzing a set of data. To solve this problem the three models were 

reformulated into a single model by [10], [18]. The reformulation resulted in a model called the Generalized 

Extreme Value (GEV) family of distributions. This is given by the following equation: 

𝐺(𝑧) = 𝑒𝑥𝑝 {− [1 + 𝜀 (
𝑧−𝜇

𝜎

−1
𝜀⁄
)]}                    (6) 

 This is defined on the set[𝑧: 1 + 𝜀 (
𝑧−𝜇

𝜎
) σ > 0] with 𝜀, σ and 𝜇 representing respectively the shape, scale 

and location parameters. The parameters also satisfy - ∞ < 𝜇<∞, - ∞ < 𝜀<∞ and σ > 0. When 𝜀 > 0 the distribution 

is known as Frechet distribution and it has a fat tail. The larger the shape parameter is, the more fat-tailed the 

distribution. Also if 𝜀<0, the distribution is the Weibull distribution and finally a Gumbel distribution when 𝜀= 

0. 

 According to [10], the unification of the three families of extreme value distributions into a single family 

distribution simplifies statistical implementation. The type II and type III classes of extreme value distributions 

given by equations (4) and (5) correspond respectively to the cases where 𝜀 > 0 and 𝜀 < 0 in this parameterization. 

The type I class indicated by equation (3) corresponds to the Gumbel distribution family for 𝜀= 0. 

 Fundamental to the study of extremes is the concept of max-stability. According to [10], a distribution 

is max-stable if and only if it is of the same type as an extreme value distribution. The class of max-stable 

distributions characterized the family of extreme value distributions. 

 
(a) The Peaks-Over-Threshold Model 
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 This approach contrasts with the block maxima model through the characterization of an observation 

as extreme if it exceeds a given high threshold. It has the advantage over the block maxima model in that data 

are more efficiently used. In the block maxima model data are wasted if one block happens to contain more 

extreme events than other blocks [3], [4], [10]. The events exceeding some chosen high threshold have an 

approximate Generalized Pareto distribution (GPD) that governs the intensity of the events. 

 By the Peaks-Over-Threshold (POT) method, if X1, X2,... Xn is a sequence of independent and identically 

distributed random variables with a marginal distribution function F, then extreme events are those of the Xi 

that exceed some high threshold denoted as u. If an arbitrary term in the Xi sequence is X, then a description of 

the stochastic behavior of extreme events is given by the conditional probability 

Pr{X > u + y/x > u}=
1−𝐹(𝑢+𝑦)

1−𝐹(𝑢)
, y> 0    (7) 

 Again, just as in the block maxima approach, since the parent distribution of F is unknown, the 

distribution of threshold excesses as given in equation (7) are unknown. In this in practical applications, 

approximations that are broadly applicable for high values of threshold are sought similar to the distribution of 

maxima of long sequences in the GEV case described earlier. This is provided by a General Pareto Distribution 

(GPD). The GPD asymptotic model description is given by the following theorem: 

Theorem 1: Let X1, X2,... be a sequence of independent random variables with a common distribution function F, and let 𝑀𝑛 

= max {X1,... Xn}. Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfies the extremal types theorem 

so that for large n, Pr {Mn≤ 𝑧}≈ G(z), where G(z) is the families of GEV distributions, then for large u the distribution 

function of (x-u), conditional on x> 𝑢 is approximately 

H (y) = 1 - (1 + ɛy/σu)                (8) 

defined on {y: y> 0 𝑎𝑛𝑑 (1 +
ɛ𝑦

𝜎𝑢
) > 0} where σu = σ + ɛ(u + µ), σu is the GPD scale parameter which is dependent 

on the threshold σ and ɛ are the corresponding scale and shape parameters of the GEV distribution and is the 

threshold excesses [10]. 

 In modelling extreme events by the POT method, inference consists of fitting the generalized Pareto 

family distributions to the observed threshold of excesses, followed by verification of the threshold and 

extrapolation. 
  

(b) Selection of Threshold in the POT Model 

 The issue of threshold selection is similar to that of selection of block size in the block maxima approach. 

The choice of the threshold is not straightforward and usually a compromise has to be found. According to [5] 

and [10], a high threshold value reduces the bias as this satisfies the convergence towards the extreme value 

theory but however increases the variance for the estimators of the parameters of the GPD, as there will be fewer 

data from which to estimate the parameters. A low threshold value on the other hand, results in the opposite i.e. 

a high bias but a low variance of the estimators, but there is more data with which to estimate the parameters. 

Consequently, various graphical techniques used for in selecting an appropriate threshold include mean excess 

plot, parameter stability plot and selection based on empirical quantiles. 
 

(i) Mean Excess Plot 

 Davison and Smith [12] suggest this graphical method for the selection of the threshold. 

 The method is based on the mean of the GPD given by E(Y)= 
𝜎

1−ɛ
. Suppose the GPD is valid as a model 

for the excesses of a threshold 𝑢0 generated by a series X1,... Xn. By the mean formula, then, E(X -𝑢0/x> 𝑢0)= 
𝜎𝑢0

1−ɛ
 

provided that ε<1 and where σuo is the GPD scale parameter for exceedances over threshold 𝑢0. The threshold 

stability property of the GPD means that if the GPD is a valid model for excesses over some threshold 𝑢0, then it 

is valid for excesses over all thresholds u >𝑢0. Thus, for all u >𝑢0, E(X -u/X > u) =
𝜎𝑢

1−ɛ
=  

𝜎𝑢0+ɛ𝑢

1−ɛ
 where σu= σ+ɛ(u-µ). 

Thus for all, u >𝑢0, E(X -u/X > u) is a linear function of u. Also, E(X -u/X > u) is the mean of excesses of the 

threshold u, and can be estimated by the sample mean of the threshold excesses. This leads to the mean residual 

life plot defined by the locus of points {(u,1/nu∑nui=1(x(i) -u)); u <xmax},where x(1),...,x(nu) consists of the nu observations 
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that exceed u, and xmax is the largest of the Xi. If the GPD assumption is correct, then the plot should be linear 

with the intercept to be 
𝜎𝑢

1−ɛ
 and slope is 

ɛ

1−ɛ
. The mean excess plot of the data can be used to distinguish between 

light-and heavy-tailed models. The plot of a heavy-tailed distribution shows an upward trend, a medium tail 

shows a horizontal line, and the plot is downward-sloped for light-tailed data. 
 

(ii) Parameter Stability Plot 

 Another graphical method which is widely used to determine the threshold u is the parameter stability 

plot. The idea of this plot is that if the excesses of a high threshold u0 follows a GPD with parameters ɛ and σu0, 

then for any threshold u such that u > u0, the excesses still follow a GPD with shape parameter ɛu = ɛ and scale 

parameter σu = σu0 + ɛ(u-u0). Letting σ* = σu0- ɛuu, this new parameterization does not depend on u any longer, 

given that u0 is a reasonable threshold. The plot defined by the locus of points {(u, σ*); u < xmax} and {(u, ɛu); u < 

xmax}, where xmax is the maximum of the observations. Estimates of σ* and ɛu are constant for all asymptotic 

approximations. The threshold is chosen at the value where the shape and scale parameters remain constant. 
 

(iii) Empirical Quantiles 

 According to [10] and [26] the simplest way to select a threshold is to choose from the raw data at a 

specified empirical quantiles in the range of 90% to 97%. This procedure consists in choosing one of the sample 

points as a threshold. The choice is practically equivalent to estimation of the kth upper order statistic Xn-k+1 from 

the ordered sequence X1,...Xn. Frequently used is the 90% quantile, but this is inappropriate from a theoretical 

point of view [28]. 
 

(B) Tests for Stationarity 

 Time series data such as temperature and rainfall may be stationary or non-stationary. Stationary series 

are characterized by a statistical equilibrium around a constant mean level as well as a constant dispersion 

around that mean level [6]. Non-stationary series that lack mean stationarity have no mean attractor toward 

which the levels tend over time. According to [16], unstable and indefinitely growing variances inherent in non-

stationary series not only complicate significance tests but also render forecasting problematic as well. According 

to [5], the Peaks-Over-Threshold method is only valid for extreme if we can assume stationarity of the data. 

Rainfall data are likely to be non-stationary as they have a tendency to show strong seasonal patterns. Rainfall 

may increase during the rainy season but stop during the dry season. Therefore, to prepare data that are likely 

to be non-stationary for any statistical modelling, it is important to subject the data to tests of stationarity to 

transform them to stationarity before analyzing them. 

 Various methods exists to transform the data before any analysis, if they are non-stationary, such as by 

taking the natural logarithm, by taking a difference or by taking residuals from a regression. There are objective 

tests which are conducted to determine the stationarity or otherwise of a time series. The objective test used 

include: graphical techniques such as Auto Correlation Function (ACF) and Partial Auto Correlation Function 

(PACF) and unit root tests such as Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) tests. In this study, ADF and KPSS tests were used to test for stationarity. 
 

(i) The ADF Test 

 The Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) tests have been used to check the 

stationarity and presence of unit root of a process. The DF test is considered valid for only AR (1) and when the 

residuals are not auto correlated. However, when there is higher order correlation or where there is 

autocorrelation in the residuals, the ADF test is employed to test for unit root. The test presumes that the errors 

are independent of one another. In other words they are distributed as white noise and homogenous. 

 There are three versions of ADF which can be used to test for the presence of unit roots. These are test 

for a unit root, test for a unit root with drift and test for unit root with drift and a deterministic time trend. These 

situations have their respective equations given by Equations 
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Δyt = Ɣyt-1+∑p-1i=1 φiyt-1 + ɛt    (9) 

Δyt = β0 + Ɣyt-1+∑p-1i=1 φiyt-1 + ɛt                  (10) 

Δyt = β0 + Ɣyt-1+∑p-1i=1 φiyt-1 + β1t+ɛt   (11) 

Where yt is the time series being tested, β0 is the drift term, t is a linear trend term, β1 is the coefficient of the linear 

trend term, φi are parameters of the model, p - 1 is the number of lags which are added to ensure the model 

residuals are white noise. Also Δyt=yt - yt-1. 

The null and alternative hypotheses are respectively; 

H0: Ɣ = 0 (non-stationary) 

H1: Ɣ < 0 (stationary) 

The test statistic is τ =Ɣ/√var(Ɣ) 

This value is compared to the corresponding critical value at different significant levels. 
  

(ii) The KPSS Test 

 Kwiatkowski et al., [20] proposed an alternative test in which yt is assumed to be stationary under the 

null hypothesis. The test can be computed by firstly regressing the dependent variable yt on a constant and a 

time trend variable t. KPSS assesses the null hypothesis that a time series is trend stationary against the 

alternative that it is a non-stationary unit root process. The test uses the structural model 

yt =ct+δt+u1t                  (12) 

Where ct = ct-1 + u2t, and δ is the trend coefficient, u1t is a stationary process and u2t is an independent and identically 

distributed process with mean zero and variance σ2. The null hypotheses are respectively; 

H0: σ2 = 0 

H1: σ2> 0 

 The null hypothesis implies that the random walk term is constant and acts as the model intercept and 

the alternative hypothesis introduces the unit root in the random walk. The test statistic is given as;  

KPSS = 
∑ 𝑆𝑡2𝑇

𝑡=1

𝑠2𝑇2
                (13) 

T is the sample size, s2 is the estimate of the long-run variance and st sum of the errors. 
 

(C) Model Selection Criteria 

 When there are two competing candidate models for a set of data, it important to subject them to test to 

see which of them better fits the data well. There are many measures that can be used for estimating how well 

the model fits the data. Two of these models employed in this study are the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC). The AIC is a measure which uses the log-likelihood but adds a 

penalizing term associated with the number of variables. The fit of a model can be improved by adding more 

variables. As a result, the AIC tries to balance the goodness-of-fit versus the inclusion of variables in the model. 

The AIC is given as; 

AIC=2k-2ln(L)    (14) 

Where, k is the number of unknown parameters included in the model, lnL is the log-likelihood function of the 

model. If the model errors are normally and independently distributed and n the number of observations with 

the residual sum of squares (RSS) defined by RSS = ∑ni=1 ἔi2, then the AIC is redefined as 

AIC= 2k +n[ln(2πRSS/n)+1]  (15) 

A variation of the AIC which is used to test model fit is the Consistent AIC which includes an added penalty for 

models that have a greater number of parameters, k, for a given sample size n. It is defined by; 

CAIC= -2lnL + [ln(1) +1]                (16) 

Another comparative fit measure which is the Bayesian information criterion (BIC). It is given by the following 

formula; 
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BIC= 2ln(L) + kln(n)                (17) 

Where, n is the sample size, k is the number of free parameters to be estimated, L is the maximized value of the 

log-likelihood function for the estimated model. 

Under the assumption that the model errors or disturbances are normally distributed, the BIC becomes; 

BIC= nln(
𝑅𝑆𝑆

𝑛
)+kln(n)               (18) 

The model with the lowest BIC value is preferable. 
 

(D) Model Diagnostics 

 The reason for fitting any statistical model to data is to draw inferences about some aspects of the 

population from which the data were drawn. Since conclusions drawn can be sensitive to the accuracy of the 

fitted model, it is important to check that the model fits the data well. The reliability of fitting a result of a 

statistical model is assessed by goodness-of fit methods. In extreme value modelling there are various methods 

which are used for model diagnostics. These include probability-probability (PP) plots, quantile-quantile (QQ) 

plots, return level plots and empirical distribution function plots. A brief description of the plots used in this 

study is as follow. 
 

(i) Q-Q Plot 

 The Q-Q plot graphs the sample quantiles against the theoretical quantiles of the distribution F and then 

a visual check is made to see whether or not the points are closed to a straight line. This plot if it fits the data well 

should converge to a straight line as the sample size increases. It is a graphical device used to test of goodness of 

fit of a sample X1,...,Xn to some distribution F in an exploratory way. It measures how close the sample quantiles 

are to the theoretical quantile. Rather than considering individual quantiles the Q-Q plot considers the sample 

quantiles against the theoretical quantiles of a specified target distribution F.  

 For a quantile plot, a given ordered sample of independent observations x(1) ≤ x(2) ≤ ... ≤ x(n) from a 

population with estimated distribution function ̂ F, has a quantile plot consisting of the points{(F-1
𝑖

𝑛+1
) (x(i)): i 

=1,...,n} 
 

(ii) Probability-Probability Plot 

 P-P plot (probability-probability plot), also known as percent-percent plot, is a graphical technique to 

assess if a fitting result of probability distribution is a reasonable model by comparing theoretical and empirical 

probability. Given an ordered sample of independent observations x(1) ≤ x(2) ≤ ... ≤ x(n) from a population with 

estimated distribution function F, then a probability plot consists of the points {(F(x(i)), 
𝑖

𝑛+1
): i =1,...,n}. If ̂ F is a 

reasonable model for the population distribution function, the points of the probability plot should lie in a 

straight line. 
 

(iii) Return Level Plot of GEV Distribution 

 Return level plots are considered convenient for both presentation and validation of extreme value 

models. The return level plot for the GEV distribution is stated in equation (19) which is obtained by inverting 

the GEV distribution function. 

  zp = {
µ − 𝜎/ɛ[1 − {−𝑙𝑜𝑔(1 − 𝑝)} − ɛ], 𝑓𝑜𝑟 ≠  0

µ − 𝜎𝑙𝑜𝑔[−𝑙𝑜𝑔(1 − 𝑝)], 𝑓𝑜𝑟 ɛ =  0
  (19) 

If –log (1-p) = yp so that the equation becomes after substitution, 

zp = {
µ − 𝜎/ɛ[1 − {−𝑙𝑜𝑔(𝑦𝑝)} − ɛ], 𝑓𝑜𝑟 ≠  0

µ − 𝜎𝑙𝑜𝑔[−𝑙𝑜𝑔(𝑦𝑝)], 𝑓𝑜𝑟 ɛ =  0
              (20) 

a plot of zp against yp on a logarithmic scale will produce a straight line when ɛ= 0 but has no finite limit when ɛ 

is less than zero. 
 

(iv) Return Levels of GPD 
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 It often of interest to evaluate return levels, for example the N-year return level denoted by xN that is 

exceeded once in N years [4]. Given that the GPD model with parameters ɛ and σ is most suitable for exceedances, 

then the probability of exceedances of a variable X over a high threshold u is written as  

P{X > x/X > u} = [1 + 𝜀 (
𝑥−𝑢

𝜎
)]

−
1

𝜀
      (21) 

Provided x > u and ɛ ≠ 0. 

 Also letting πu= p{X > u} where πu represents the probability of occurrence of an excess of a high 

threshold u where the subscript u emphasizes that this value depends on the choice of threshold u then  

P{X > x} = πu[1 + 𝜀 (
𝑥−𝑢

𝜎
)]

−
1

𝜀
      (22) 

 Therefore, the level xm that is exceeded on average once every m observations will be obtained by solving 

the following equation 

πu[1 + 𝜀 (
𝑥−𝑢

𝜎
)]

−
1

𝜀
 = 

1

𝑚
                       (23) 

Rearrangement of equation 23 results in  

xm = u +
𝜎

𝜀
 [(mπu)ɛ - 1]       (24) 

Equation 23 according to [4] is only valid when m is large enough to ensure that x > u. 

 In the case where ɛ = 0, applying the same preceding procedures to the GPD leads to 

xm = u + σlog(mπu)       (25) 

Where xm is called the m-observation return level. In the case where the N-year return level is of interest and 

given that the number of observations per year is ny then 

m = Nny                       (26) 

Hence, the N-year return level is given by 

xN = {
𝑢 +

𝜎

𝜀
[(𝑁𝑛𝑦𝜋𝑢)ɛ − 1], ɛ ≠  0

𝑢 + 𝜎𝑙𝑜𝑔(𝑁𝑛𝑦𝜋𝑢), ɛ =  0
                  (27) 

An estimate of πu is also given the  

πu = 
𝑘

𝑛
         (28) 

Where k is the number of exceedances and n is the sample size. Coles [10], stated that the number of exceedances 

of u follows a Binomial distribution, Bin (n, πu). 
 

3 Results and Discussion 

Summary of Statistics Result of Annual Precipitation 

 The graph of Maximum rainfall in Sokoto Basin from 1915-2018 is presented in Figure 1. Furthermore, 

the highest mean annual rainfall amount recorded for the area is 1477.5mm. The summary statistics for annual 

rainfall of is shown in Table 1. It includes measures of central tendency, variability, and shape. Of particular 

interest here are the standardized skewness and standardized kurtosis, which can be used to determine whether 

the sample comes from a normal distribution. Values of these statistics outside the range of -2 to +2 indicate 

significant departures from normality, which would tend to invalidate any statistical test regarding the standard 

deviation. In this case, the standardized skewness and kurtosis value is not within the range expected for data 

from a normal distribution.  
 

Parameters Estimation Method and Model Selection Criteria 

 Table 2 shows result of the estimated parameters to determine which of the model is best fit.  There is 

no much difference between the values for the test of location parameter (µ) of GEV and Gumbel compared to 

Poisson Process, which has the lowest value. The GP model does not have location parameter. The same goes for 

scale parameter (σ) of GEV whose value has a slight difference to Gumbel but has larger difference when 

compared with Poisson Process value. The GP model has the largest value for the scale parameter with value 

(201.5119). The shape parameter (ɛ) for both the GEV and GP model has negative value of (-0.06776) and (-

0.148203), respectively. The Poisson Process value was (0.1463287) and Gumbel did not have shape parameter.  
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 For model selection criteria, the Negative Log-Likelihood (NNL), Akaike Information Criterion and 

Bayesian Information Criterion were used for each model. NLL value for GEV and Gumbel were closed to each 

other compared to others. AIC value for GEV and Gumbel were also close to each other’s as compared to other 

models. The same can also be said of BIC value for all the models, which follow the same trend in with GEV, 

Gumbel, Poisson Process and GP models values of 1391.063, 1387.6340, 171.5326 and 425.2249, respectively. 

From Table 2, Poisson Process of Generalized Pareto appear to be the best model to fit the data since it has lowest 

AIC (166.9535), and BIC (171.5326) value.  
 

 
Figure 1: Graph of Annual Maximum Rainfall for Sokoto Basin (1915-2018) 

Table 1: Summary of Statistics Result for Annual Precipitation 

 

Count 104 

Average 720.228 

Standard deviation 192.326 

Coefficient of variation 26.7034% 

Minimum 342.2 

Maximum 1477.5 

Range 1135.3 

Standardized skewness 3.82179 

Standardized kurtosis 3.74741 

 

Table 2: Parameter Estimation based on GEV, Generalized Pareto, Gumbel and Poisson Process 

Estimation Methods  

 GEV Model Gumbel Poisson Process 

of GP Model 

GP Model 

Location 636.8953 631.9885 140.94048 - 

Scale 161.8049 160.0016 55.7572989 201.5119 

Shape -0.06776 - 0.1463287 -0.148203 
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Model Selection Criteria  

Negative 

Log-

Likelihood 

688.5649 

 

689.1727 80.476 209.0861 

AIC 1383.13 1382.3450 166.9535 422.1722 

BIC 1391.063 1387.6340 171.5326 425.2249 

 

Stationarity Test 

 Computes the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null hypothesis that x is level or 

trend stationary. KPSS Level = 0.58349, Truncation lag parameter = 2, p-value = 0.02414. A stationary process has 

the property that the mean, variance and autocorrelation structure do not change over time. 

 With alpha being 0.05, and p-value of the test statistics =0.02414, we reject the null hypothesis, and say 

that is rainfall is not level or trend stationary. The diagnostic plots of GEV distribution are presented in Figure 

2. 

 

Figure 2: Diagnostic Plots of the GEV Distribution 

Comparison of GEV and GPD Models  

 The stationary maximum rainfall return series was modelled using both the generalized extreme value 

and generalized pareto distribution. The negative value of the shape parameter suggests that the Weibull 

distribution fits the data well for both the GEV and GPD, tentatively. 

 Some graphical techniques were then employed to ascertain the fitness of the GEV and GPD to the data. 

The plots used were the model quantile plot, empirical quantile plot, density plot, and return level plot based on 

randomly generated data for the fitted GEV and GPD function as shown in Figure 2 for GEV and Figure 3 for 

GPD. Both Figures shows that the model quantiles and the empirical quantiles plot against those derived from 

the GEV and GPD function produced a straight line along the unit diagonal. This confirmed the asymptotic 

assumption for using both the GEV and GPD function. To further buttress the fit of the GEV and GPD, the density 
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plot shown good agreement between the empirical density shown by the solid black line and that of the fitted 

GEV and GPD function shown by the blue line.  

 Finally, the return level plot also shown that the plot on the log scale could be that heavy tail, bounded-

tail and light-tail cases are concave, convex and linear, respectively. A visual inspection shows that it is convex 

which suggests that the shape parameter is negative. This confirms the negative value in the shape parameter as 

given in Table 2. The convexity of the return level plot also shows that the distribution that best fits the data from 

both the GEV and GPD family is of the Weibull type distribution, which has an upper bound. Furthermore, the 

return level plot shows the return periods in years for 2, 5, 20, 100, 500 and 1000 return periods. 

The linearity of the model quantiles and the empirical quantiles from Figure 2 and 3 indicate that, the 

model is valid. From the histogram, the density also appears to be consistent with the data points. The diagnostic 

plots indicate a good fit for both the GEV and GPD model.  

 

Figure 3: Diagnostic Plots of GPD Model 

Fitting of Poisson Process to Generalized Pareto Distribution 

 The diagnostic plots suggest that both the GEV and GPD fit the data of maximum rainfall returns. 

However, their AIC and BIC values shown in Table 2 revealed that the Poisson Process of GP model is superior 

in fitting the data because it has the lowest AIC and BIC values. In order to validate this conclusion, further 

goodness-of-fit tests were conducted using three non-parametric tests, namely, Kolmogorov-Smirnov (KS), 

Cramer-von Mises (CM) and the Anderson-Darling (AD) tests. Table 3 shows the result of GP distributions based 

on the three tests. The data is not normally distributed, hence the use of Extreme Value model to capture to tail 

area of the distribution. 
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Table 3: Results of Goodness-of-Fit Tests 

Normality Test:𝐻0: Normal  

Type Test Statistics  p-value 

Anderson-Darling 1.0044 0.01152 

Cramer-von Mises 0.17368 0.0114 

Kolmogorov-Smirnov 0.10431 0.007242 

 

The Threshrange Plot 

 The first step in fitting the GPD is the selection of an appropriate threshrange level for the tails of the 

distribution. Two methods for selecting an adequate threshold, namely parameter stability plot and mean 

residual life plot were used in the selection of the threshold. Firstly, in the parameter stability plot, a range of 

thresholds was arbitrary selected with the nature of the data in mind for a total number of 20 thresholds. Based 

on variation of the minimum and maximum thresholds using the in2extreme package in R, it was revealed that a 

minimum threshold of 200 and a maximum threshold of 800 yielded the best stability of the parameters (see 

Appendix A.1). The choice of minimum threshold and maximum threshold is based on the output generated by 

the software for arbitrary choices made based on the data and stability plot. The stability plots in Figure 4 show 

that the parameter estimates do not appear to vary considerably for even small values. Vertical line segments 

display the 95% normal approximation confidence intervals for each parameter estimate. Therefore, any 

threshold that lies between 200 and 800 could be used to fit the GPD. Based on this criterion, a threshold of 760 

was chosen bearing in mind the fact that too high a threshold will result in few excesses that will result in a large 

variance. 
 

 

Figure 4: Threshrange plot 

Mean Excess Plot 

 The second method, which was used to choose the appropriate threshold, is the mean excess plot. The 

idea is to find the lowest threshold whereby a straight line could be drawn from that point to higher values and 

still be within the uncertainty bounds indicated by blue dashed lines as shown in Figure 5. From Figure 5, a 

threshold of 760 was chosen to fit the model. The downward behaviour of the plot also suggests a light-tail 
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distribution. Mean Residual Life Plot play similar role with Mean excess plot. Figure 6 show that the plot was 

smooth up to a point except somewhere around 800, which conforms to that of mean excess plot. 

 

Figure 5: Mean Excess Plot  

 

Figure 6: Mean Residual Life Plot 

Fitting of Threshold Value 

 From Table 2, Poisson Process of Generalized Pareto appear to be the best model to fit the data since it 

has lowest AIC (166.9535), and BIC (171.5326) value.  

 Using the threshold value of 760 from mean excess plot, the estimated parameters of the GPD is shown 

in Table 2. The shape parameter, which is dominant in determining the qualitative behavior of the Poisson 

Process of GP distribution, is positive. The value of the shape parameter of the GPD (-0.148203) is not close to 

the estimated shape parameter value (-0.06776) in the GEV estimate. This shows that the distribution of excesses 

has an upper bound or upper end point and also is short-tailed. Just as in the GEV case, this is a Frechet 

distribution in the family of the generalized Pareto distributions. 

 Furthermore, to confirm that the threshold selected is good to use in fitting the GPD, diagnostic plots 

were plotted based on the selected threshold of 760. Figure 7 indicate that the assumptions for fitting the GPD to 

excesses over threshold were met. The diagnostic plots agreed with those of the GEV distribution function. The 

QQ-plot in Figure 7 shows that all the points are approximately linearly distributed along the unit diagonal 

showing a good fit of the GPD for maximum rainfall returns. This agrees with QQ-plot generated by randomly 
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selected data from the GPD against the empirical quantiles. The empirical density plot also affirms how adequate 

the GPD is in terms of modelling the data. It was observed that the number of excesses is 70 for the chosen 

threshold. The return level plot is also convex as in the GEV distribution case. Apart from a few points at the 

upper portion which show departure, the rest of the points lie on the line. 

 

Figure 7: Diagnostic Plots for Chosen Threshold 

Return Levels Estimate 

 In this theory, the return period (or the average recurrence interval) corresponds to the probability p of 

a return level that has a 100% chance of being exceeded in given year. The concepts of return level and return 

period are commonly used to convey information about the likelihood of rare events such as floods. A return 

level with a return period (years) of 𝑇 = 1 𝑝⁄  is a high threshold 𝑥𝑝 (e.g., maximum annual rainfall) whose 

probability of exceedance is 𝑝, [27].  

 The return level for 5-year, 10-year, 20-year, 30-year, 50-year, 100-year was carried out in this study and 

shown in Table 4. The 5-year return level shows that 867.662 mm of annual rainfall is expected at least once 

between the year 2018 and 2023. The 10-year return level shows that 974.6115 mm of annual rainfall is expected 

at least once between the year 2018 and 2028. The 20-year return level shows that 1072.2101 mm of annual rainfall 

is expected at least once between the year 2018 and 2038. Return level for 30, 50 and 100-year are 1126.2364, 

1191.6743), and 1278.3797, respectively. 
 

Table 4: Return Level Estimate 

Return Level 95% Lower CI Estimate 95% Upper CI 

5-year  817.4591 867.6662 917.8733 

10-year  910.0324 974.6115 1039.1907 

20-year  987.2178 1072.2101 1157.2025 

30-year  1026.3426 1126.2364 1226.1302 
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50-year  1070.0334 1191.6743 1313.3152 

100-year  1120.3415 1276.3797 1432.4180 

 

4 Conclusion and Recommendations 

Conclusion 

 In this study, the annual maximum rainfall from December, 1915 up to December, 2018 were studied 

using two extreme value distribution models. Before fitting the models to the data, the maximum rainfall data 

were transformed logarithmically in order to ensure that they are stable. The following conclusions were made  

(i) Maximum rainfall values followed a log-quadratic trend.  

(ii) Generalized Pareto Distributions was adequate model for the maximum rainfall data in Sokoto Basin based 

on evidence from diagnostic plots, model stability checks and model comparison techniques.  

(iii) The return levels revealed that rainfall are increasing and can reach unbearable levels in the far future. 
  

Recommendations 

The following recommendations were made based on the outcome of the study; 

i. Farmers should be encouraged on climate change adaptation measures through agro-forestry, soil and 

water management. Alternative sources of water for crop irrigation should be encouraged such as water 

harvesting culture during the rainy season for later use. 

ii. The study can be replicated in other basins within Nigeria to study the effect of global warming in the 

country. 
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APPENDIX A.1 

## R Code for precipitation 

rainfal<-read.csv("C:/Users/TaiwoAdesina/Documents/Rasaq/rainfall.csv") 

attach(rainfal) 

#levelor trend stationary test  

require(tseries) 

kpss.test(rainfal[,2]) 

#Normality test  

require(nortest) 

#Anderson-Darling test 

ad.test(rainfal[,2]) 

#Cramer-Von test 

cvm.test(rainfal[,2]) 

#Lilli test 

lillie.test(rainfal[,2]) 

#qqnorm plot 

require(fBasics) 
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Qqnormplot(rainfal[,2]) 

require(fExtremes) 

require(extRemes) 

threshrange.plot(rainfal$Annual.prec, r = c(400, 800), nint=5) 

mePlot(rainfal$Annual.prec) 

mrlplot(rainfal$Annual.prec) 

fit<- fevd(rainfal$Annual.prec,rainfal, units="mm") 

fit 

plot(fit) 

par(mfrow=c(1,1)) 

plot(fit, "probprob") 

plot(fit, "hist", col="gold",ylim=c(0,0.01)) 

plot(fit, "density", ylim=c(0,0.01)) 

plot(fit, "trace") 

# GEV 

fit1 <- fevd(rainfal$Annual.prec,rainfal, units="mm") 

fit1 

plot(fit1) 

plot(fit1, "trace") 

return.level(fit1) 

return.level(fit1, do.ci=TRUE) 

ci(fit1, return.period=c(5,10,20,30,50,100)) # Same as above. 

## GP df 

fit<- fevd(rainfal$Annual.prec,rainfal, threshold=760, type="GP", units="mm", verbose=TRUE) 

fit 

plot(fit) 

plot(fit, "trace") 

ci(fit, type="parameter") 

par(mfrow=c(1,1)) 

ci(fit, type="return.level", method="proflik", xrange=c(4,7.5), verbose=TRUE) 

# Can check using locator(2). 
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#PP 

fit<- fevd(Fort$Prec, threshold=0.395, type="PP", 

optim.args=list(method="Nelder-Mead"), units="inches", verbose=TRUE) 

fit 

plot(fit) 

plot(fit, "trace") 

ci(fit, type="parameter") 

distill(fit) 

distill(fit, cov=FALSE) 

fit2 <- fevd(rainfal$Annual.prec,rainfal, location.fun=~Annual.prec) 

fit2 

plot(fit2) 

## 

# plot(fit2, "trace") # Gives warnings because of some NaNs produced 

# (nothing to worry about). 

lr.test(fit, fit2) 

ci(fit) 

ci(fit, type="parameter") 

fit0 <- fevd(rainfal$Annual.prec,rainfal, type="Gumbel") 

fit0 

plot(fit0) 

lr.test(fit0, fit) 

plot(fit0, "trace") 

ci(fit, return.period=c(5,10,20,30,50,100)) 

ci(fit, type="return.level", method="proflik", return.period=20, verbose=TRUE) 

ci(fit, type="parameter", method="proflik", which.par=3, xrange=c(-0.1,0.5), verbose=TRUE) 

# L-moments 

fitLM<- fevd(rainfal$Annual.prec,rainfal, method="Lmoments", units="inches") 

fitLM # less info. 

plot(fitLM) 

# above is slightly slower because of the parametric bootstrap 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021                                                           643 
ISSN 2229-5518  
 

IJSER © 2021 

http://www.ijser.org 

# for finding CIs in return levels. 

par(mfrow=c(1,1)) 

plot(fitLM, "density", ylim=c(0,0.01)) 

 

IJSER

http://www.ijser.org/



